Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Cell ; 185(9): 1506-1520.e17, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35385687

RESUMO

Schistosomes cause morbidity and death throughout the developing world due to the massive numbers of eggs female worms deposit into the blood of their host. Studies dating back to the 1920s show that female schistosomes rely on constant physical contact with a male worm both to become and remain sexually mature; however, the molecular details governing this process remain elusive. Here, we uncover a nonribosomal peptide synthetase that is induced in male worms upon pairing with a female and find that it is essential for the ability of male worms to stimulate female development. We demonstrate that this enzyme generates ß-alanyl-tryptamine that is released by paired male worms. Furthermore, synthetic ß-alanyl-tryptamine can replace male worms to stimulate female sexual development and egg laying. These data reveal that peptide-based pheromone signaling controls female schistosome sexual maturation, suggesting avenues for therapeutic intervention and uncovering a role for nonribosomal peptides as metazoan signaling molecules.


Assuntos
Peptídeos , Feromônios , Schistosoma/crescimento & desenvolvimento , Animais , Feminino , Masculino , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Triptaminas
2.
PLoS Negl Trop Dis ; 15(12): e0010062, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941866

RESUMO

Schistosomes cause schistosomiasis, the world's second most important parasitic disease after malaria in terms of public health and social-economic impacts. A peculiar feature of these dioecious parasites is their ability to produce viable and fertile hybrid offspring. Originally only present in the tropics, schistosomiasis is now also endemic in southern Europe. Based on the analysis of two genetic markers the European schistosomes had previously been identified as hybrids between the livestock- and the human-infective species Schistosoma bovis and Schistosoma haematobium, respectively. Here, using PacBio long-read sequencing technology we performed genome assembly improvement and annotation of S. bovis, one of the parental species for which no satisfactory genome assembly was available. We then describe the whole genome introgression levels of the hybrid schistosomes, their morphometric parameters (eggs and adult worms) and their compatibility with two European snail strains used as vectors (Bulinus truncatus and Planorbarius metidjensis). Schistosome-snail compatibility is a key parameter for the parasites life cycle progression, and thus the capability of the parasite to establish in a given area. Our results show that this Schistosoma hybrid is strongly introgressed genetically, composed of 77% S. haematobium and 23% S. bovis origin. This genomic admixture suggests an ancient hybridization event and subsequent backcrosses with the human-specific species, S. haematobium, before its introduction in Corsica. We also show that egg morphology (commonly used as a species diagnostic) does not allow for accurate hybrid identification while genetic tests do.


Assuntos
Genoma Helmíntico , Hibridização Genética , Schistosoma haematobium/crescimento & desenvolvimento , Schistosoma haematobium/genética , Schistosoma/crescimento & desenvolvimento , Schistosoma/genética , Animais , Tamanho Corporal , Bulinus/parasitologia , Quimera/anatomia & histologia , Quimera/genética , Quimera/crescimento & desenvolvimento , Vetores de Doenças , Europa (Continente) , Feminino , Humanos , Masculino , Schistosoma/anatomia & histologia , Schistosoma haematobium/anatomia & histologia , Esquistossomose/parasitologia , Caramujos/parasitologia
3.
PLoS Negl Trop Dis ; 15(9): e0009706, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473691

RESUMO

BACKGROUND: Mekong schistosomiasis is a parasitic disease caused by the blood-dwelling fluke Schistosoma mekongi. This disease contributes to human morbidity and mortality in the Mekong region, posing a public health threat to people in the area. Currently, praziquantel (PZQ) is the drug of choice for the treatment of Mekong schistosomiasis. However, the molecular mechanisms of PZQ action remain unclear, and Schistosoma PZQ resistance has been reported occasionally. Through this research, we aimed to use a metabolomic approach to identify the potentially altered metabolic pathways in S. mekongi associated with PZQ treatment. METHODOLOGY/PRINCIPAL FINDINGS: Adult stage S. mekongi were treated with 0, 20, 40, or 100 µg/mL PZQ in vitro. After an hour of exposure to PZQ, schistosome metabolites were extracted and studied with mass spectrometry. The metabolomic data for the treatment groups were analyzed with the XCMS online platform and compared with data for the no treatment group. After low, medium (IC50), and high doses of PZQ, we found changes in 1,007 metabolites, of which phosphatidylserine and anandamide were the major differential metabolites by multivariate and pairwise analysis. In the pathway analysis, arachidonic acid metabolism was found to be altered following PZQ treatment, indicating that this pathway may be affected by the drug and potentially considered as a novel target for anti-schistosomiasis drug development. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that arachidonic acid metabolism is a possible target in the parasiticidal effects of PZQ against S. mekongi. Identifying potential targets of the effective drug PZQ provides an interesting viewpoint for the discovery and development of new agents that could enhance the prevention and treatment of schistosomiasis.


Assuntos
Anti-Helmínticos/administração & dosagem , Ácido Araquidônico/metabolismo , Praziquantel/administração & dosagem , Schistosoma/efeitos dos fármacos , Schistosoma/metabolismo , Esquistossomose/tratamento farmacológico , Animais , Resistência a Medicamentos , Feminino , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Praziquantel/farmacologia , Schistosoma/genética , Schistosoma/crescimento & desenvolvimento , Esquistossomose/parasitologia
4.
Biomolecules ; 11(4)2021 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920436

RESUMO

Schistosoma mekongi is found in the lower Mekong river region and causes schistosomiasis. Low sensitivity of diagnosis and development of drug resistance are problems to eliminate this disease. To develop novel therapies and diagnostics for S. mekongi, the basic molecular biology of this pathogen needs to be explored. Bioactive peptides have been reported in several worms and play important roles in biological functions. Limited information is available on the S. mekongi peptidome. Therefore, this study aimed to identify S. mekongi peptides using in silico transcriptome mining and mass spectrometry approaches. Schistosoma peptide components were identified in adult worms, eggs, and infected mouse sera. Thirteen neuropeptide families were identified using in silico predictions from in-house transcriptomic databases of adult S. mekongi worms. Using mass spectrometry approaches, 118 peptides (from 54 precursor proteins) and 194 peptides (from 86 precursor proteins) were identified from adult worms and eggs, respectively. Importantly, eight unique peptides of the S. mekongi ubiquitin thioesterase, trabid, were identified in infected mouse sera 14, 28, and 56 days after infection. This protein may be a potential target for diagnosis of schistosomiasis. The S. mekongi peptide profiles determined in this study could be used for further drug and diagnostic development.


Assuntos
Proteínas de Helminto/genética , Schistosoma/genética , Esquistossomose/sangue , Transcriptoma , Animais , Proteínas de Helminto/sangue , Proteínas de Helminto/metabolismo , Camundongos , Óvulo/metabolismo , Schistosoma/crescimento & desenvolvimento , Schistosoma/metabolismo , Schistosoma/patogenicidade , Esquistossomose/parasitologia
5.
Parasit Vectors ; 13(1): 426, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819437

RESUMO

BACKGROUND: Avian schistosomes, the causative agents of human cercarial dermatitis (or swimmer's itch), die in mammals but the mechanisms responsible for parasite elimination are unknown. Here we examined the role of reactive nitrogen species, nitric oxide (NO) and peroxynitrite, in the immune response of mice experimentally infected with Trichobilharzia regenti, a model species of avian schistosomes remarkable for its neuropathogenicity. METHODS: Inducible NO synthase (iNOS) was localized by immunohistochemistry in the skin and the spinal cord of mice infected by T. regenti. The impact of iNOS inhibition by aminoguanidine on parasite burden and growth was then evaluated in vivo. The vulnerability of T. regenti schistosomula to NO and peroxynitrite was assessed in vitro by viability assays and electron microscopy. Additionally, the effect of NO on the activity of T. regenti peptidases was tested using a fluorogenic substrate. RESULTS: iNOS was detected around the parasites in the epidermis 8 h post-infection and also in the spinal cord 3 days post-infection (dpi). Inhibition of iNOS resulted in slower parasite growth 3 dpi, but the opposite effect was observed 7 dpi. At the latter time point, moderately increased parasite burden was also noticed in the spinal cord. In vitro, NO did not impair the parasites, but inhibited the activity of T. regenti cathepsins B1.1 and B2, the peptidases essential for parasite migration and digestion. Peroxynitrite severely damaged the surface tegument of the parasites and decreased their viability in vitro, but rather did not participate in parasite clearance in vivo. CONCLUSIONS: Reactive nitrogen species, specifically NO, do not directly kill T. regenti in mice. NO promotes the parasite growth soon after penetration (3 dpi), but prevents it later (7 dpi) when also suspends the parasite migration in the CNS. NO-related disruption of the parasite proteolytic machinery is partly responsible for this effect.


Assuntos
Óxido Nítrico/farmacologia , Peptídeo Hidrolases/efeitos dos fármacos , Schistosoma/efeitos dos fármacos , Animais , Aves/parasitologia , Sistema Nervoso Central/parasitologia , Guanidinas/farmacologia , Proteínas de Helminto/efeitos dos fármacos , Proteínas de Helminto/metabolismo , Humanos , Camundongos , Óxido Nítrico Sintase/efeitos dos fármacos , Óxido Nítrico Sintase/metabolismo , Peptídeo Hidrolases/metabolismo , Ácido Peroxinitroso/farmacologia , Schistosoma/crescimento & desenvolvimento , Schistosoma/patogenicidade , Schistosomatidae/efeitos dos fármacos , Schistosomatidae/crescimento & desenvolvimento , Schistosomatidae/patogenicidade , Esquistossomose/tratamento farmacológico , Pele/parasitologia , Medula Espinal/parasitologia , Infecções por Trematódeos/tratamento farmacológico
6.
Parasitol Res ; 119(7): 2189-2205, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32468189

RESUMO

Schistosomiasis remains a parasitic infection which poses serious public health consequences around the world, particularly on the African continent where cases of introgression/hybridization between human and cattle schistosomiasis are being discovered on a more frequent basis in humans, specifically between Schistosoma haematobium and S. bovis. The aim of this paper is to analyze the occurrence of S. bovis in cattle and its relationship with S. haematobium in an area where cattle and humans share the same site in Benin (West Africa). We used the chronobiology of cercarial emergence as an ecological parameter and both molecular biology (COI mtDNA and ITS rDNA) of the larvae and morphology of the eggs as taxonomic parameters. The results showed a chronobiological polymorphism in the cercarial emergence rhythm. They showed for the first time the presence of S. bovis in Benin, the presence of introgressive hybridization between S. bovis and S. haematobium in domestic cattle, and the presence of atypical chronobiological patterns in schistosomes from cattle, with typical S. haematobium shedding pattern, double-peak patterns, and nocturnal patterns. Our results showed that the chronobiological life-history trait is useful for the detection of new hosts and also may reveal the possible presence of introgressive hybridization in schistosomes. Our results, for the first time, place cattle as reservoir host for S. haematobium and S. bovis x S. haematobium. The consequences of these results on the epidemiology of the disease, the transmission to humans, and the control of the disease are very important.


Assuntos
Bovinos/parasitologia , Schistosoma/isolamento & purificação , Esquistossomose/veterinária , Animais , Benin/epidemiologia , Cercárias/genética , Cercárias/crescimento & desenvolvimento , Cercárias/isolamento & purificação , Ritmo Circadiano , DNA Mitocondrial/genética , DNA Ribossômico/genética , Introgressão Genética , Humanos , Schistosoma/genética , Schistosoma/crescimento & desenvolvimento , Schistosoma haematobium/genética , Schistosoma haematobium/crescimento & desenvolvimento , Schistosoma haematobium/isolamento & purificação , Esquistossomose/parasitologia
7.
RNA Biol ; 17(6): 805-815, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32131676

RESUMO

Despite the low level expression of some long noncoding RNAs (lncRNAs), the differential expression of specific lncRNAs plays important roles during the development of many organisms. Schistosomes, parasitic flatworms that are responsible for schistosomiasis, infects over 200 million people resulting in chronic disease and hundreds of thousands of deaths. Schistosomes have a complex life cycle that transitions between molluscan and mammalian hosts. In a molluscan snail host, the sporocyst stage develops over 5 weeks undergoing asexual reproduction to give rise to free-swimming and infectious cercariae that penetrate human skin and eventually mature into egg producing worms in mammals. The tight integration of the sporocyst to the snail host hepatopancreas hinders the -omics study in the molluscan stage, so the sporocyst transcriptome has only been examined for lncRNAs in immature in vitro samples. Here we analyzed the in vivo mature sporocyst transcriptome to identify 4,930 total lncRNAs between the molluscan and mammalian stages of the parasite. We further demonstrate that the lncRNAs are differentially expressed in a development-dependent manner. In addition, we constructed a co-expression correlation network between lncRNAs and protein-coding (PC) genes that was used to identify clusters of lncRNA transcripts with potential functional relevance. We also describe lncRNA-lncRNA and lncRNA-kinome correlations that identify lncRNAs with prospective roles in gene regulation. Finally, our results show clear differential expression patterns of lncRNAs in host-dependent development stages of S. mansoni and ascribe potential functional roles in development based on predicted intracellular interaction.


Assuntos
Regulação da Expressão Gênica , Mamíferos/parasitologia , Moluscos/parasitologia , Fases de Leitura Aberta , RNA Longo não Codificante , Schistosoma/crescimento & desenvolvimento , Schistosoma/genética , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Estágios do Ciclo de Vida , RNA de Protozoário , Reação em Cadeia da Polimerase em Tempo Real , Caramujos/genética , Transcriptoma
8.
Front Immunol ; 11: 624178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613562

RESUMO

Human schistosomes combat the unique immune systems of two vastly different hosts during their indirect life cycles. In gastropod molluscs, they face a potent innate immune response composed of variable immune recognition molecules and highly phagocytic hemocytes. In humans, a wide variety of innate and adaptive immune processes exist in proximity to these parasites throughout their lifespan. To survive and thrive as the second most common parasitic disease in humans, schistosomes have evolved many techniques to avoid and combat these targeted host responses. Among these techniques are molecular mimicry of host antigens, the utilization of an immune resistant outer tegument, the secretion of several potent proteases, and targeted release of specific immunomodulatory factors affecting immune cell functions. This review seeks to describe these key immune evasion mechanisms, among others, which schistosomes use to survive in both of their hosts. After diving into foundational observational studies of the processes mediating the establishment of schistosome infections, more recent transcriptomic and proteomic studies revealing crucial components of the host/parasite molecular interface are discussed. In order to combat this debilitating and lethal disease, a comprehensive understanding of schistosome immune evasion strategies is necessary for the development of novel therapeutics and treatment plans, necessitating the discussion of the numerous ways in which these parasitic flatworms overcome the immune responses of both hosts.


Assuntos
Imunidade Adaptativa , Gastrópodes/parasitologia , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Schistosoma/imunologia , Esquistossomose mansoni/imunologia , Animais , Gastrópodes/imunologia , Humanos , Imunomodulação , Estágios do Ciclo de Vida , Pulmão/imunologia , Pulmão/parasitologia , Mimetismo Molecular , Mucinas/metabolismo , Oocistos/metabolismo , Proteoma , Schistosoma/crescimento & desenvolvimento , Schistosoma/metabolismo , Schistosoma/patogenicidade , Transcriptoma
9.
Parasit Vectors ; 12(1): 531, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703729

RESUMO

Many parasites migrate through different tissues during their life-cycle, possibly with the aim to enhance their fitness. This is true for species of three parasite genera of global importance, Ascaris, Schistosoma and Plasmodium, which cause significant global morbidity and mortality. Interestingly, these parasites all incorporate the liver in their life-cycle. The liver has a special immune status being able to preferentially induce tolerance over immunity. This function may be exploited by parasites to evade host immunity, with Plasmodium spp. in particular using this organ for its multiplication. However, hepatic larval attrition occurs in both ascariasis and schistosomiasis. A better understanding of the molecular mechanisms involved in hepatic infection could be useful in developing novel vaccines and therapies for these parasites.


Assuntos
Ascaris/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Fígado/parasitologia , Plasmodium/crescimento & desenvolvimento , Schistosoma/crescimento & desenvolvimento , Animais , Humanos
10.
Microbiol Spectr ; 7(4)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31325285

RESUMO

While disease and outbreaks are mainly clonal for bacteria and other asexually reproducing organisms, sexual reproduction in schistosomes and other helminths usually results in unique individuals. For sexually reproducing organisms, the traits conserved in clones will instead be conserved in the group of organisms that tends to breed together, the population. While the same tools are applied to characterize DNA, how results are interpreted can be quite different at times (see another article in this collection, http://www.asmscience.org/content/journal/microbiolspec/10.1128/microbiolspec.AME-0002-2018). It is difficult to know what the real effect any control program has on the parasite population without assessing the health of this population, how they respond to the control measure, and how they recover, if they do. This review, part of the Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology of Infectious Diseases, concentrates on one approach using pooled samples to study schistosome populations and shows how this and other approaches have contributed to our understanding of this parasite family's biology and epidemiology. *This article is part of a curated collection.


Assuntos
Schistosoma/fisiologia , Esquistossomose/parasitologia , Animais , Humanos , Epidemiologia Molecular , Reprodução Assexuada , Schistosoma/genética , Schistosoma/crescimento & desenvolvimento , Esquistossomose/epidemiologia
11.
ChemMedChem ; 13(22): 2374-2389, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30212614

RESUMO

Chemotherapy based on repeated doses of praziquantel remains the most effective control strategy against schistosomiasis, a neglected tropical disease caused by platyhelminths of the genus Schistosoma spp. Its long-term use, however, raises serious concerns about drug resistance against praziquantel. Therefore, it is generally acknowledged that alternative treatment options are urgently needed. This Review summarizes data on relinquished drugs as well as recent advances in the area of antischistosomal compounds from a medicinal chemistry point of view. Furthermore, insights into the structure-activity relationships of each class of compounds are presented including in vitro and in vivo data, if available. Although many compounds have demonstrated good antischistosomal activity in vitro, they offer little promise to replace praziquantel. Nevertheless, the race to develop novel antischistosomal agents is ongoing.


Assuntos
Esquistossomose/tratamento farmacológico , Esquistossomicidas/uso terapêutico , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Estrutura Molecular , Schistosoma/efeitos dos fármacos , Schistosoma/crescimento & desenvolvimento , Esquistossomicidas/química , Esquistossomicidas/farmacologia , Relação Estrutura-Atividade
12.
Acta Trop ; 180: 88-96, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29331279

RESUMO

Schistosomiasis caused by parasitic flatworms of blood flukes, remains a major public health concern in China. The significant progress in controlling schistosomiasis in China over the past decades has resulted in the remarkable reduction in the prevalence and intensity of Schistosoma japonicum infection to an extremely low level. Therefore, the elimination of schistosomiasis has been promoted by the Chinese national government. Hubei Province is the major endemic area, that is, along the middle and low reaches of the Yangtze River in the lake and marshland regions of southern China. Eliminating the transmission of schistosomiasis in Hubei Province is challenging. The current issue is to determine the distributions and clusters of schistosomiasis transmission. In this study, we assessed the spatial distribution of schistosomiasis and the risk at the county level in Hubei Province from 2011 to 2015 to provide guidance on the elimination of schistosomiasis transmission in lake and marshland regions. Spatial database of human S.japonicum infection from 2011 to 2015 at the county level in the study area was built based on the annual schistosomias is surveillance data. Moran's I, the global spatial autocorrelation statistics, was utilized to describe the spatial autocorrelation of human S. japonicum infection. In addition, purely spatial scan statistics combined with space-time scan statistics were used to determine the epidemic clusters. Infection rates of S. japonicum decreased in each endemic county in Hubei from 2011 to 2015. Human S. japonicum infection rate showed statistical significance by global autocorrelation analysis during the study period (Moran's I > 0, P < 0.01). This result suggested that there were spatial clusters present in the distribution of S. japonicum infection for the five years. Purely spatial analysis of human S. japonicum infection showed one most likely cluster and one secondary cluster from 2011 to 2015, which covered four and one counties, respectively. Spatiotemporal clustering analysis determined one most likely cluster and one secondary cluster both in 2011-2012, which appeared in 4 and 5 counties, respectively. However, the number of clustering foci decreased with time, and no cluster was detected after 2013.The clustering foci were both located at the Jianghan Plain, along the middle reaches of the Yangtze River and its connecting branch Hanbei River. Spatial distribution of human S. japonicum infections did not change temporally at the county level in Hubei Province. A declining trend in spatiotemporal clustering was observed between 2011 and 2015. However, effective control strategies and integrated prevention should be continuously performed, especially at the Jianghan Plain area along the Yangtze and Hanbei River Basin. Multivariate statistical analysis was carried out to investigate the risk of missing examinations, missing treatment, and unstandardized treatment events. The results showed that age, education level and Sanitary latrines are risk factors for missing examinations (b > 0, OR >1), and treatment times in past and feeding cattle in village group are protective factors (b < 0, OR <1). We also found that age and education level are risk factors for missing treatment (b > 0, OR >1). Study of the risk for un-standardized treatment revealed that occupation is risk factors (b > 0, OR >1), though, education level is protective factors (b < 0, OR <1). Therefore, precise prevention and control should be mainly targeted at these special populations.


Assuntos
Schistosoma/crescimento & desenvolvimento , Esquistossomose/epidemiologia , Análise Espaço-Temporal , Animais , Bovinos , China/epidemiologia , Bases de Dados Factuais , Epidemias , Humanos , Lagos/parasitologia , Prevalência , Fatores de Risco , Rios/parasitologia , Esquistossomose/parasitologia , Conglomerados Espaço-Temporais , Toaletes
13.
Acta Trop ; 180: 76-80, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29273443

RESUMO

In this review, we are discussing South Asian schistosomiasis; more specifically species which are responsible for schistosomiasis in India or South Asia -Schistosoma indicum, S. spindale, S. nasale, S. incognitum, S. gimvicum (S.haematobium), Bivitellobilharzia nairi, Orientobilharzia bomfordi, O. dattai, O. turkestanicum and O.harinasutai, their survival strategies such as mild pathology to the host, producing low egg number and utilizing fresh water snails (Indoplanorbis exustus and Lymnaea luteola) in stagnant water bodies like ponds, lakes, ditches, low laying areas, marshy lands and rice fields. Presently, correct identification of blood fluke species, their immature stages, male schistosomes and their intermediate host details like strain variations, susceptibilities, ecologies are not well studied. Species like B. nairi, O. bomfordi, O. harinasutai (Lymnaea rubiginosa intermediate host for O.harinasutai in Thailand) are also not well studied. Moreover, snail species like Oncomalania spp are not from South Asia, but species of Tricula or Neotricula are reported from this geography, which gives indications of S. mekongi like blood fluke presence in the area. Although in humans, cercarial dermatitis is rampant in rural population with occasional reporting of schistosome eggs in stools, human schistosomiasis is considered absent from this region, despite finding a foci (now dead) of urinary schistosomiasis in Gimvi village of Ratnagiri district, Maharashtra, India. There is great difficulty in diagnosing the infection in man and animals due to low egg production, hence development of a single step antigen detection test is the need of the hour. Interestingly, lethal effect of praziquantel was seen against S.haematobium and S.mansoni. However, this drug failed to cause significant reduction of S. incognitum and S. spindale experimentally suggesting some differences in the biology of two groups of the schistosomes. Triclabendazole showed adulticidal effect at a dose rate of 20 mg/kg body against female schistosome worms, but at lower dose (10 mg/kg body wt) of the drug, a dose that is used in treating bovine fascioliasis, it is providing chances of drug resistance of the persisting schistosomes against triclabendazole. Though the South Asian institutes have all the facilities to tackle issues related to existing schistosomes, it is recommended to develop an international collaboration by establishing an international centre on schistosomiasis in India.


Assuntos
Controle de Doenças Transmissíveis/métodos , Água Doce/parasitologia , Cooperação Internacional , Schistosoma/crescimento & desenvolvimento , Esquistossomose/parasitologia , Animais , Anti-Helmínticos/uso terapêutico , Ásia , Bovinos , Feminino , Humanos , Índia , Masculino , Praziquantel/uso terapêutico , Schistosomatidae/crescimento & desenvolvimento , Caramujos/parasitologia , Tailândia
14.
Trends Parasitol ; 34(3): 246-260, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29276074

RESUMO

Understanding schistosome biology is still a challenging mission. The reproductive biology of this parasitic trematode is closely associated with the pathologic consequences of schistosomiasis, the devastating infectious disease caused by members of the family Schistosomatidae worldwide. Recent studies of signaling mechanisms confirmed the prominent roles of protein kinases (PKs) in directing schistosome biology, and first evidence was obtained for an additional contribution of kinases with substrates different from proteins (non-PKs). This review provides an overview of the Schistosoma mansoni kinome in the context of male-female interaction and summarizes recent studies of kinases controlling development and differentiation. Due to their importance for schistosome biology, kinases represent Achilles' heels and are therefore of high value also for translational research.


Assuntos
Proteínas Quinases/metabolismo , Schistosoma/enzimologia , Schistosoma/crescimento & desenvolvimento , Esquistossomose/parasitologia , Animais , Feminino , Humanos , Masculino
15.
PLoS Negl Trop Dis ; 11(12): e0006122, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29253882

RESUMO

Schistosomes are trematode parasites of global importance, causing infections in millions of people, livestock, and wildlife. Most studies on schistosomiasis, involve human subjects; as such, there is a paucity of longitudinal studies investigating parasite dynamics in the absence of intervention. As a consequence, despite decades of research on schistosomiasis, our understanding of its ecology in natural host populations is centered around how environmental exposure and acquired immunity influence acquisition of parasites, while very little is known about the influence of host physiology, coinfection and clearance in the absence of drug treatment. We used a 4-year study in free-ranging African buffalo to investigate natural schistosome dynamics. We asked (i) what are the spatial and temporal patterns of schistosome infections; (ii) how do parasite burdens vary over time within individual hosts; and (iii) what host factors (immunological, physiological, co-infection) and environmental factors (season, location) explain patterns of schistosome acquisition and loss in buffalo? Schistosome infections were common among buffalo. Microgeographic structure explained some variation in parasite burdens among hosts, indicating transmission hotspots. Overall, parasite burdens ratcheted up over time; however, gains in schistosome abundance in the dry season were partially offset by losses in the wet season, with some hosts demonstrating complete clearance of infection. Variation among buffalo in schistosome loss was associated with immunologic and nutritional factors, as well as co-infection by the gastrointestinal helminth Cooperia fuelleborni. Our results demonstrate that schistosome infections are surprisingly dynamic in a free-living mammalian host population, and point to a role for host factors in driving variation in parasite clearance, but not parasite acquisition which is driven by seasonal changes and spatial habitat utilization. Our study illustrates the power of longitudinal studies for discovering mechanisms underlying parasite dynamics in individual animals and populations.


Assuntos
Búfalos/parasitologia , Interações Hospedeiro-Parasita/imunologia , Schistosoma/imunologia , Esquistossomose/transmissão , Esquistossomose/veterinária , Tricostrongiloidíase/veterinária , Animais , Búfalos/imunologia , Coinfecção/parasitologia , Feminino , Estudos Longitudinais , Schistosoma/crescimento & desenvolvimento , Esquistossomose/parasitologia , Esquistossomose/patologia , Estações do Ano , Trichostrongyloidea/crescimento & desenvolvimento , Trichostrongyloidea/imunologia , Tricostrongiloidíase/parasitologia , Tricostrongiloidíase/patologia
17.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt B): 3613-3620, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27062905

RESUMO

BACKGROUND: Schistosomiasis caused by blood-dwelling flukes, namely Schistosoma mansoni and Schistosoma haematobium is a severe debilitating disease, widespread in sub-Saharan Africa, the Middle East, and South America. Developing and adult worms are unscathed by the surrounding immune effectors and antibodies because the parasite is protected by a double lipid bilayer armor which allows access of nutrients, while binding of specific antibodies is denied. SCOPE OF REVIEW: Fluorescence recovery after bleaching, extraction of surface membrane cholesterol by methyl-ß-cyclodextrin, inhibition and activation of sphingomyelin biosynthesis and hydrolysis, and elastic incoherent and quasi-elastic neutron scattering approaches have helped to clarify the basic mechanism of this immune evasion, and showed that sphingomyelin (SM) molecules in the worm apical lipid bilayer form with surrounding water molecules a tight hydrogen bond barrier. Viability of the parasite and permeability of the outer shield are controlled by equilibrium between SM biosynthesis and activity of a tegument-associated neutral sphingomyelinase (nSMase). MAJOR CONCLUSIONS: Excessive nSMase activation by polyunsaturated fatty acids (PUFA), such as arachidonic acid (ARA) leads to disruption of the SM molecules and associated hydrogen bond network, with subsequent access of host antibodies and immune effectors to the outer membrane and eventual parasite death. GENERAL SIGNIFICANCE: ARA was predicted and shown to be a potent schistosomicide in vitro and in vivo in experimental animals and in children. Additionally, it was advocated that schistosomiasis vaccine candidates should be selected uniquely among excretory-secretory products of developing worms, as contrary to cytosolic and surface membrane antigens, they are able to activate the effector functions of the host antibodies and toxic molecules. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo".


Assuntos
Bioquímica/métodos , Biofísica/métodos , Esquistossomose/imunologia , Esquistossomose/terapia , Animais , Evasão da Resposta Imune , Schistosoma/crescimento & desenvolvimento , Schistosoma/imunologia , Vacinação
18.
Epidemiol Serv Saude ; 25(3): 575-584, 2016.
Artigo em Português | MEDLINE | ID: mdl-27869928

RESUMO

OBJECTIVE: to characterize printed educational materials about schistosomiasis produced at federal, state and municipal levels in Brazil. METHODS: the educational materials were characterized considering the following categories: 'format', 'parasite and intermediate host', 'definitive host (ill)' and 'disease'. RESULTS: 60 materials were assessed, three had no information about risk activities and 41 indicated more than one popular name for the disease, thus allowing greater reach among the target audience in diverse endemic areas; the biological cycle was missing or incorrect in 53 materials; the intermediate host (snail) was incorrectly illustrated, with use of stereotyped images in 39 and no image in one material; diagnosis was mentioned in 36 materials. CONCLUSION: the printed educational materials assessed had incorrect content which may compromise health education efforts; little attention was paid to schistosomiasis diagnosis.


Assuntos
Educação em Saúde/métodos , Esquistossomose/prevenção & controle , Materiais de Ensino/normas , Animais , Brasil , Vetores de Doenças , Doenças Endêmicas , Humanos , Higiene , Estágios do Ciclo de Vida , Prevalência , Schistosoma/crescimento & desenvolvimento , Esquistossomose/transmissão , Esquistossomose mansoni/prevenção & controle , Esquistossomose mansoni/transmissão , Caramujos/parasitologia , Terminologia como Assunto
19.
PLoS Negl Trop Dis ; 10(11): e0005138, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27861520

RESUMO

For scientists working on gonochoric organisms, determining sex can be crucial for many biological questions and experimental studies, such as crossbreeding, but it can also be a challenging task, particularly when no sexual dimorphism is visible or cannot be directly observed. In metazoan parasites of the genus Schistosoma responsible for schistosomiasis, sex is genetically determined in the zygote with a female heterogametic ZW/ZZ system. Adult flukes have a pronounced sexual dimorphism, whereas the sexes of the larval stages are morphologically indistinguishable but can be distinguished uniquely by using molecular methods. Therefore, reliable methods are needed to identify the sex of larvae individuals. Here, we present an endpoint PCR-based assay using female-specific sequences identified using a genome-wide comparative analysis between males and females. This work allowed us to identify sex-markers for Schistosoma haematobium and Schistosoma bovis but also the hybrid between both species that has recently emerged in Corsica (France). Five molecular sex-markers were identified and are female-specific in S. haematobium and the hybrid parasite, whereas three of them are also female-specific in S. bovis. These molecular markers will be useful to conduct studies, such as experimental crosses on these disease-causing blood flukes, which are still largely neglected but no longer restricted to tropical areas.


Assuntos
Schistosoma haematobium/genética , Schistosoma/genética , Animais , Feminino , Genoma Helmíntico , Proteínas de Helminto/genética , Hibridização Genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Schistosoma/crescimento & desenvolvimento , Schistosoma/fisiologia , Schistosoma haematobium/crescimento & desenvolvimento , Schistosoma haematobium/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-27891322

RESUMO

Schistosomes are metazoan parasites and can cause schistosomiasis. Epigenetic modifications include DNA methylation, histone modifications and non-coding RNAs. Some enzymes involved in epigenetic modification and microRNA processes have been developed as drugs to treat the disease. Compared with humans and vertebrates, an in-depth understanding of epigenetic modifications in schistosomes is starting to be realized. DNA methylation, histone modifications and non-coding RNAs play important roles in the development and reproduction of schistosomes and in interactions between the host and schistosomes. Therefore, exploring and investigating the epigenetic modifications in schistosomes will facilitate drug development and therapy for schistosomiasis. Here, we review the role of epigenetic modifications in the development, growth and reproduction of schistosomes, and the interactions between the host and schistosome. We further discuss potential epigenetic targets for drug discovery for the treatment of schistosomiasis.


Assuntos
Epigênese Genética , Schistosoma/crescimento & desenvolvimento , Schistosoma/genética , Animais , Interações Hospedeiro-Parasita , Fenômenos Reprodutivos Fisiológicos , Schistosoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...